Estudio computacional del impacto directo de un rayo de 200 kA sobre tanques externos de techo flotante

Autores/as

DOI:

https://doi.org/10.36561/ING.29.12

Palabras clave:

Descarga atmosférica, Tanque externo con techo flotante, Electromagnetismo computacional

Resumen

Este estudio investiga el comportamiento electromagnético de tanques externos con techo flotante sometidos a la descarga directa de un rayo de 200 kA. Mediante electromagnetismo computacional, se calcularon los campos eléctricos y magnéticos para dos escenarios: con y sin el uso de conductores de derivación, según lo recomendado por API RP-545. Los resultados de la simulación revelaron que los valores del campo eléctrico en la unión entre la pared del tanque y el techo flotante superan los 200 kV/m en ausencia de conductores de derivación, lo que aumenta el riesgo de ignición. La implementación de conductores de derivación redujo significativamente la intensidad del campo, lo que indica su eficacia para mitigar los riesgos de incendio en entornos de almacenamiento inflamables.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

National Fire Protection Association; NFPA 30: Flammable and Combustible Liquids Code, 2015.

Benkaouha, B.; Chiremsel, Z.; Bellala, D.; Integration of fire safety barriers in the probabilistic analysis of accident scenarios triggered by lightning strike on atmospheric storage tanks, Journal of Failure Analysis and Prevention, 2022. Vol. 22: 2326–2351. doi: 10.1007/s11668-022-01500-y. DOI: https://doi.org/10.1007/s11668-022-01500-y

Cheng, Y.; Luo, Y.; Analysis of Natech risk induced by lightning strikes in floating roof tanks based on the Bayesian network model, Process Safety Progress, 2020. doi: 10.1002/prs.12164. DOI: https://doi.org/10.1002/prs.12164

Jia, P.; Lv, J.; Sun, W.; Jin, H.; Meng, G.; Li, J.; Modified analytic hierarchy process for risk assessment of fire and explosion accidents of external floating roof tanks, Process Safety Progress, 2023. doi: 10.1002/prs.12520. DOI: https://doi.org/10.1002/prs.12520

Adekitan, A. I.; Rock, M.; Analytical computation of lightning strike probability for floating roof tanks, Topical Issues of Rational Use of Natural Resources: Saint-Petersburg Scientific Conference Abstracts, Vol. 1, 2020. [Online]. Available: https://www.researchgate.net/publication/352373902 DOI: https://doi.org/10.1088/1742-6596/1878/1/012001

American Petroleum Institute; API 2003: Protection Against Ignitions Arising out of Static, Lightning, and Stray Currents, 2015.

International Electrotechnical Commission; IEC 62305: Protection against Lightning, Parts 1–4, 2010.

Rakov, V. A.; Uman, M. A.; Lightning: Physics and Effects, 2003, Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9781107340886

Rizk, F. A. M.; A model for switching impulse leader inception in air gaps, IEEE Transactions on Power Delivery, 1989. Vol. 4(1): 596–606. DOI: https://doi.org/10.1109/61.19251

Gallimberti, I.; The mechanism of the long spark formation, Journal de Physique Colloques, 1979. Vol. 40(C7): C7-193–C7-250. DOI: https://doi.org/10.1051/jphyscol:19797440

American Petroleum Institute; API RP 505: Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2, 1997.

American Petroleum Institute; API RP 500: Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2, 1997.

Nucci, C. A.; Mazzetti, C.; Rachidi, F.; Ianoz, M. V.; Lightning return stroke models with specified channel-base current, IEEE Transactions on Electromagnetic Compatibility, 1990. Vol. 32(1): 79–92.

Agrawal, A. K.; Price, H. J.; Gurbaxani, S. H.; Transient response of a multiconductor line, IEEE Transactions on Electromagnetic Compatibility, 1980. Vol. 22(2): 119–129. DOI: https://doi.org/10.1109/TEMC.1980.303824

Baba, Y.; Electromagnetic Computation Methods for Lightning Surge Protection Studies, 1st ed., 2016, John Wiley & Sons, Singapore. DOI: https://doi.org/10.1002/9781118275658

Zhang, W. S. C.; Zhang, J. W. M.; Risk assessment for fire and explosion accidents of steel oil tanks using improved AHP based on FTA, Process Safety Progress, 2015. Vol. 34(4): 393–402. doi: 10.1002/prs.11780. DOI: https://doi.org/10.1002/prs.11780

American Petroleum Institute; API RP 545: Recommended Practice for Lightning Protection of Aboveground Storage Tanks for Flammable or Combustible Liquids, 2009.

Liu, Y.; Yakun, Z. F.; Analysis of the effect on the large floating roof oil tanks struck by indirect lightning based on FDTD, Proceedings of the International Conference on Lightning Protection (ICLP), 2014, pp. 1–4. DOI: https://doi.org/10.1109/ICLP.2014.6973253

Publicado

2025-12-09

Cómo citar

[1]
J. D. Losada Losada, D. Marín Yépez, y C. Younes Velosa, «Estudio computacional del impacto directo de un rayo de 200 kA sobre tanques externos de techo flotante», Memoria investig. ing. (Facultad Ing., Univ. Montev.), n.º 29, pp. 190–204, dic. 2025.

Número

Sección

Artículos